
Analyzing the Effects of Space and Time on Bikeshare Use: A

Case Study in Washington, DC

Matthew Wigginton Conway

December 14, 2013

Bikesharing is a relatively new form of shared transportation wherein bikes are de-
posited at stations throughout a city. Users pay an annual fee and they can then take
bikes from any station and return them to any station. These systems generate a wealth
of data. The stations are electronic, so each time a trip is taken, a record is stored in a
database with the origin, destination, start and end times of that trip. For some systems,
this data is freely available online. This project aims to use data on the approximately
4.5 million trips taken on Washington, DC’s Capital Bikeshare (CaBi) system from 2010
through the present to examine how time of day and station location affect the usage of
the bikeshare system.

1 Data Processing

Before analysis could be undertaken, the data needed to be obtained and cleaned. The
data are available from the CaBi website1 as a series of quarterly CSV files. Data from the
fourth quarter of 2010 through the 2nd quarter of 2013 were used. Each record contains
the origin and destination of the trip, the start and end times, and ancillary information.
The script fetchData.sh (page 12) was used to download the CSV files. The files were
then merged using csvMerge.py (page 13). This script also cleaned the data; the column
names in the CSV files from different quarters differ slightly, so the script contains code to
normalize them. It also renames the columns to remove whitespace, making it simpler to
use the data in R.

There are no spatial data present in the trip history files. To remedy this, station
locations were retrieved from the CaBi real-time API2 and merged with the trip history
data using expandFileWithXY.py (page 15). This script also projects the station locations
to Universal Transverse Mercator so that Euclidean math can be used.

1. http://capitalbikeshare.com/system-data
2. http://capitalbikeshare.com/data/stations/bikeStations.xml

1

http://capitalbikeshare.com/system-data
http://capitalbikeshare.com/data/stations/bikeStations.xml

Matthew Wigginton Conway December 14, 2013

Finally, load˙data.R (page 19) was used to load the data into R, removing trips longer
than 20km or 2 hours, assuming these trips to be errors. This script also implicitly removes
trips that are missing either origin or destination coordinates; these trips likely began or
ended at stations that have been removed. Since we derive the geographic coordinates
from the real-time station information feed, stations that are no longer active have no
coordinates. There are 7168 such trips; this count can be determined either by the output
of expandFileWithXY.py (page 15) or the dedicated script findTripsNoCoords.py (page
17). After cleaning (and labeling, described in the next section), 4,485,213 trips were left
for analysis.

2 Time of Day Effects

One of the chief difficulties of any bikeshare system is keeping bicycles balanced across
the system. The problem is doubly constrained, because the system operator not only
needs to keep enough bikes available at all stations, but also needs to prevent stations
from becoming completely full and thus preventing people from parking the bikes. This is
usually accomplished via a fleet of trucks which pick up bikes from overfull stations and
rebalance them to empty or nearly empty stations.

For the time of day portion of this project, the data on bike share trips was used to
determine whether the distribution of start and end stations differs significantly between
time periods. Eight time periods were defined: morning (6a–9a), midday (9a–3p), after-
noon (3p–7p) and overnight (7p–9p) for both weekdays and weekends. The boundaries of
the time periods are the same as those used in the Metropolitan Washington Council of
Governments travel model, although MWCOG does not further divide the time periods
into weekday and weekend patterns (Metropolitan Washington Council of Governments
2013, 14).

2.1 Methodology

Each trip in the data was first assigned a time period based on its start time using labeling.R
(page 20). For each time period, an origin-destination matrix was created, showing the
number of trips between each station pair using relabel.R (page 22). The matrices were
then compared pairwise, comparing each time period to every other time period. The
following test statistic was computed for each pairwise comparison.∑

i

∑
j

(tij,1 − tij,2)2

(
∑
i

∑
j

tij,2)
2

(1)

Where i and j represent origin and destination stations, respectively, tij,1 is trips from
origin i to destination j in time period 1, and tij,2 is trips from origin i to destination j in

2

Matthew Wigginton Conway December 14, 2013

time period 2. The denominator of the equation is to scale the test statistic based on the
total number of trips taken in the time period, so that the magnitude of the test statistic is
not affected by the absolute number of trips taken in the time period. Additionally, matrix
2 is scaled before calculation such that the total number of trips in each matrix are the
same. That is, ∑

i

∑
j

tij,1 =
∑
i

∑
j

tij,2 (2)

Once test statistics were computed for each pair of time periods, a Monte Carlo sim-
ulation was undertaken to determine whether the time periods differ significantly. The
trips that were originally used to generate the origin-destination matrices were randomly
reassigned to different time periods. The number of trips in each time period was held
constant. Since this worked by relabeling the existing trips, the distribution of trips to
origins and destinations was constant over all time periods though it varied within time
periods. Origin-destination matrices were then calculated using the relabeled trips, and
the same pairwise comparison was done and test statistics computed. This process was
repeated 999 times. This simulation was performed by relabel.R (page 22). If there is no
significant difference in the origin-destination matrices between time periods, one would
expect the test statistics from the observed data to fall in the middle of the distribution.

2.2 Results

It was found that there is an effect of time of day on the origin-destination matrices. For
every pair, there was no test statistic from the Monte Carlo simulation higher than the
test statistic from the observed pair. The p-values between time periods are show below.

WkMr WkMd WkAf WkNt WeMr WeMd WeAf WeNt

Weekday Morning
(6a–9a)

0.999 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*

Weekday Midday
(9a–3p)

0.000* 0.999 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*

Weekday Afternoon
(3p–7p)

0.000* 0.000* 0.999 0.000* 0.000* 0.000* 0.000* 0.000*

Weekday Overnight
(7p–6a) †

0.000* 0.000* 0.000* 0.999 0.000* 0.000* 0.000* 0.000*

Weekend Morning
(6a–9a)

0.000* 0.000* 0.000* 0.000* 0.999 0.000* 0.000* 0.000*

Weekend Midday
(9a–3p)

0.000* 0.000* 0.000* 0.000* 0.000* 0.999 0.000* 0.000*

Weekend Afternoon
(3p–7p)

0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.999 0.000*

Weekend Overnight
(7p–6a) †

0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.999

* Statistically significant at α = 0.05 level
† Friday night is a weekend night, Sunday night is a weekday night.

3

Matthew Wigginton Conway December 14, 2013

The p-value represents the probability that the observed differences between two time
periods could have occurred by chance. As we can see, there is a statistically significant
difference between every time period and every other time period (p < 0.05).

2.3 Discussion

Such a result should not be surprising. To take a trivial example, commuters may ride from
a residential area to a Metro stop each morning, and the reverse each evening. Weekend
trips may represent people using the system for pleasure or entertainment rather than
commuting. The data confirm that usage patterns (measured by station origin-destination
matrices) differ for each time period.

This intensifies the need for rebalancing. Bikeshare demand is often not in equilib-
rium, so bikes must be moved from station to station by the system operator in order to
ensure that there are available bikes and available docks at all stations (Instituto para la
Diversificación y Ahorro de la Enerǵıa 2007, 108). That is, if most people ride bikes from
residential areas to commercial areas in the morning, there will not be enough bikes avail-
able in residential areas, and there will not be enough docks available in commercial areas.
The problem is doubly-constrained, because there need to both be bikes available at each
station in order for users to take a bike, and empty docks in order to return bikes. An
interesting project would be to determine to what extent demand is cyclical. If the demand
is cyclical, with people biking to commercial areas in the morning and back to residential
areas in the afternoon, providing a sufficient number of bikes would ameliorate the need
for rebalancing. There may, however, be a general trend as well. For instance, people may
prefer to bikeshare to work if they are in a hurry and bikeshare is faster than transit,3 and
take transit home if they are tired. In this case, there could be a general trend of bikes
moving towards commercial areas. This could be tested using the trip history data, but is
beyond the scope of this project.

3 Effects of Space on Bikeshare Use

Some bikeshare stations are, of course, more popular than others. It was hypothesized that
station popularities (defined here as the average number of bike movements—both pickups
and dropoffs—per day) are spatially autocorrelated. That is, stations near each other
would tend to have similar popularities. To test this, a Moran’s I statistic was computed
to evaluate whether there is significant autocorrelation between station popularities.

3. Using this same trip history data, it was found that many trips in the data are faster than comparable
bikeshare trips; people tend to use bikeshare for trips where it is faster than transit (Wong 2012).

4

Matthew Wigginton Conway December 14, 2013

3.1 Methodology

Data were loaded into R, and were then summarized to get a count of bike movements
for each station. This process was repeated twice to get counts for both the number of
trips originating and the number of trips terminating at each station; the results were then
summed by station. This number of bike movements was then normalized by dividing by
the number of days each station had been open. The count of bike movements is skewed
right, with many stations having relatively few bike movements per day, and a few stations
having a large number of bike movements per day. In order to better analyze the data, a
Box-Cox transformation was undertaken to normalize the distribution. Using the Shapiro-
Wilks estimator, the Box-Cox parameter was estimated as λ = 0.33. This did serve to make
the distribution more symmetric (see fig. 1 for a comparison between the untransformed
and transformed distribution). The transformed distribution, however, is bimodal. This
should not affect the Moran’s I calculation, but explanation of this would be a worthwhile
direction for future research.

To calculate I, a weight matrix was first calculated. This was done by creating a
Delaunay triangulation of the stations using the tri2nb function from the spdep package.
Links longer than 4km were removed, which left two graph components, one in Washington,
Arlington and Alexandria, and one in Montgomery County, Maryland. The component in
Montgomery County was removed for the purposes of this analysis. 4km was chosen as a
the maximum link length visually, removing the most outrageous links while still keeping
some degree of connectivity. A Shiny application was created to visualize the network
with different thresholds for breaking links; a slider can be used to adjust the threshold
while seeing results in real time (see Figure 3, server.R (page 28) and ui.R (page 28)). The
adjacency graph defined is shown in figure 2.

The adjacency graph was then converted to a weight matrix in row-standardized form
(that is, all rows sum to 1). Thus the neighborhood value of a point can be interpreted
as a local mean. Moran’s I was calculated, and a Moran plot was generated for further
interpretation.

3.2 Results

A Moran’s I value of 0.78 was found (p < 0.05), indicating strong positive spatial au-
tocorrelation between stations. That is, stations near each other tend to have similar
popularities. Upon examining the Moran plot (fig. 4), we see clearly the positive trend.
We also see that the influential points (marked +�) are fairly evenly distributed about the
scatter. These influential points are somewhat spatially dispersed as well (see fig. 5).

It should be noted that the coordinates may not be exactly right for all of the trips in
the data. We are using the current coordinates of each station, drawn from the real-time
station information feed. The stations are moved short distances from time to time (Wong
2012). It is believed that this does not significantly impact the results; the weight matrix

5

Matthew Wigginton Conway December 14, 2013

Bike movements/day

N
um

be
r o

f s
ta

tio
ns

0 50 100 150 200 250 300

0
20

40
60

80
10

0
12

0

Box-Cox transformed bike movements/day (λ=0.33)

N
um

be
r o

f s
ta

tio
ns

0 5 10 15

0
10

20
30

40
50

Figure 1: Station popularity, before and after Box-Cox transformation.

is based on adjacency rather than distance.

3.3 Discussion

There is significant positive spatial autocorrelation in the popularities of bikeshare stations.
This makes sense intuitively, in terms of both first- and second-order effects. On the first-
order side, areas with many attractions are likely to have more bike movements at all
stations in the area. On the second-order side, each trip requires two stations within
biking distance of each other; more stations closer together means more options for trips.
One could also hypothesize an inhibition effect at very fine scales in some situations: if
there are two stations very near each other, but one is preferable, it may inhibit use of the
other one. For example, there are two stations near the San Francisco train station in the
Bay Area Bikeshare system. One is directly in front of the station, and one is across the

6

Matthew Wigginton Conway December 14, 2013

Washington

Arlington

Alexandria

Figure 2: Station adjacency graph: Delaunay triangulation with links longer than 4km
removed.

street. It is likely that the one across the street is less popular because people prefer to
use the one in front of the station when bikes or docks are available. This project did not
attempt to differentiate between first- and second-order effects.

In general, the locations of the influential points are not surprising. For example, station
31258, one of the stations that is much more popular than those around it, is located at
the Lincoln Memorial, a popular destination for tourists. It is also a neighbor to the
not-particularly-popular station 31211, despite being separated from it by freeways; this
artificially pulls down the local average and makes station 31258 more influential. This is a
downside of using pure Euclidean planar geometry to define the neighbor matrix. Station
31211 is itself another good example; it is much less popular than its neighbors. Some
of this is due to the aforementioned connection with the station at the Lincoln Memorial.
This station is also located at the Kennedy Center, a performing-arts center which is on the

7

Matthew Wigginton Conway December 14, 2013

Figure 3: A Shiny application for interactively visualizing networks with different link
lengths; adjusting the slider changes the maximum link length in the network, breaking
more or fewer links in the original triangulation.

Potomac and separated from much of Washington by Interstate 66. It is not particularly
accessible by bicycle; this is likely the reason it is not particularly popular. Finally, the
aforementioned inhibition effect of stations very close to each other may be occurring near
DuPont Circle. Station 31200 is located directly on DuPont Circle, while station 31234
is located about a block away and around a corner. People, especially tourists, traveling
to DuPont Circle likely ride to the more obvious station; this may inhibit use of the less
obvious station.

4 General Discussion and Further Research

This project found that both time and space exert significant effects on bikeshare use. The
distributions of trips between stations differ significantly at different times of day. There
also tends to be spatial autocorrelation; popular stations tend to be near each other.

One interesting topic for further research would be to look further into the origin-
destination matrices at different times of day. One could attempt to determine the direction
of movement of the bikes at different times of day, and the determinants of the movement
(for instance, are people from Metro stations to downtown areas to downtown areas in
the morning due to the commute?). This research would be useful in that it could inform
rebalancing. One team has developed statistical models for predicting bikeshare station

8

Matthew Wigginton Conway December 14, 2013

0 5 10 15

0
2

4
6

8
10

12

Box-Cox transformed bike movements/day

S
pa

tia
lly

 la
gg

ed
 tr

an
sf

or
m

ed
 b

ik
e

m
ov

em
en

ts
/d

ay

31007

31060

31061

31112
31200

31201

31211

31234

31258

31262

31267

31623

3170231704
31705
31709

31800

Figure 4: Moran plot of station popularity.

use, but their approach does not model the flow of bikes between stations because they did
not have full trip data available in Chicago (Dempsey et al. 2013). Using origin-destination
matrices would be an alternate way to model bikeshare use.

The bikeshare trip data provides a wealth of information for analysis. Very rarely do
researchers have access to complete origin-destination matrices for a particular mode. This
research confirms the value of geography in explaining the use of this new transportation
tool. Further research could do more with this data, creating predictive tools to assist
bikeshare system operators and planners.

9

Matthew Wigginton Conway December 14, 2013

Figure 5: Map of station popularities and Moran influential points.

10

Matthew Wigginton Conway December 14, 2013

References

Dempsey, Walter, Juan-Pablo Velez, Adam Fishman, Jette Henderson, Breanna Miller, and
Vidhur Vohra. 2013. Methodology - dssg/bikeshare wiki. https://github.com/dssg/
bikeshare/wiki/methodology.

Instituto para la Diversificación y Ahorro de la Enerǵıa. 2007. Gúıa metodológica para
la implantación de sistemas de bicicletas públicas en España. Madrid: Instituto para
la Diversificación y Ahorro de la Enerǵıa. isbn: 978-84-96680-24-1. http://www.

idae.es/index.php/mod.documentos/mem.descarga?file=/documentos_Guia_

Bicicletas_8367007d.pdf.

Metropolitan Washington Council of Governments. 2013. User’s Guide for the MWCOG/N-
CRTPB Travel Forecasting Model, Version 2.3, Build 52: Draft Report. Technical re-
port. Washington: Metropolitan Washington Council of Governments. http://www.
mwcog.org/transportation/activities/models/files/V2.3.52_Users_Guide_

v2_w_appA.pdf.

Wong, James. 2012. “When is Bikeshare Faster than Transit?” Greater Greater Washing-
ton. http://www.greatergreaterwashington.org/post/15168/.

Copyright c© 2013 Matthew Wigginton Conway. CC BY-NC 3.0.

11

https://github.com/dssg/bikeshare/wiki/methodology
https://github.com/dssg/bikeshare/wiki/methodology
http://www.idae.es/index.php/mod.documentos/mem.descarga?file=/documentos_Guia_Bicicletas_8367007d.pdf
http://www.idae.es/index.php/mod.documentos/mem.descarga?file=/documentos_Guia_Bicicletas_8367007d.pdf
http://www.idae.es/index.php/mod.documentos/mem.descarga?file=/documentos_Guia_Bicicletas_8367007d.pdf
http://www.mwcog.org/transportation/activities/models/files/V2.3.52_Users_Guide_v2_w_appA.pdf
http://www.mwcog.org/transportation/activities/models/files/V2.3.52_Users_Guide_v2_w_appA.pdf
http://www.mwcog.org/transportation/activities/models/files/V2.3.52_Users_Guide_v2_w_appA.pdf
http://www.greatergreaterwashington.org/post/15168/

Matthew Wigginton Conway December 14, 2013

A Source Code Listings

This appendix contains source code listings for the code used in this project. Data management and retrieval code
is primarily Python, whereas analysis code is written in R. All of the code used in this project is licensed under
the Apache License, and is also available at https://www.github.com/mattwigway/bikeshare-analysis.

A.1 Data Management

Scripts in this section are used to retrieve data from Capital Bikeshare and process it into a format suitable for
analysis.

A.1.1 fetchData.sh

This shell script simply calls the other scripts to retrieve and process the data.

#!/b in/sh
f e t c h and pr oce ss a l l o f the c a p i t a l b i k e s h a r e data

Copyright (C) 2013 Matthew Wigginton Conway .

Licensed under the Apache License , Version 2.0 (the ” License ”) ;
you may not use t h i s f i l e e x c e p t in compliance wi th the License .
You may o b t a i n a copy o f the License at

h t t p : //www. apache . org/ l i c e n s e s /LICENSE−2.0

Unless r e q u i r e d by a p p l i c a b l e law or agreed to in wr i t i ng , s o f t w a r e
d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
See the License f o r the s p e c i f i c language governing permiss ions and
l i m i t a t i o n s under the License .

BASEDIR=$ (dirname $0)

wget http : // c a p i t a l b i k e s h a r e . com/ a s s e t s / f i l e s / t r ip−history−data/2010−4th−quarte r .
csv

wget http : // c a p i t a l b i k e s h a r e . com/ a s s e t s / f i l e s / t r ip−history−data/2011−1 st−quarte r .
csv

wget http : // c a p i t a l b i k e s h a r e . com/ a s s e t s / f i l e s / t r ip−history−data/2011−2nd−quarte r .
csv

wget http : // c a p i t a l b i k e s h a r e . com/ a s s e t s / f i l e s / t r ip−history−data/2011−3rd−quarte r .
csv

wget http : // c a p i t a l b i k e s h a r e . com/ a s s e t s / f i l e s / t r ip−history−data/2011−4th−quarte r .
csv

wget http : // c a p i t a l b i k e s h a r e . com/ a s s e t s / f i l e s / t r ip−history−data/2012−1 st−quarte r .
csv

wget http : // c a p i t a l b i k e s h a r e . com/ a s s e t s / f i l e s / t r ip−history−data/2012−2nd−quarte r .
csv

12

https://www.github.com/mattwigway/bikeshare-analysis

Matthew Wigginton Conway December 14, 2013

wget http : // c a p i t a l b i k e s h a r e . com/ a s s e t s / f i l e s / t r ip−history−data/2012−3rd−quarte r .
csv

wget http : // c a p i t a l b i k e s h a r e . com/ a s s e t s / f i l e s / t r ip−history−data/2012−4th−quarte r .
csv

wget http : // c a p i t a l b i k e s h a r e . com/ a s s e t s / f i l e s / t r ip−history−data/2013−1 st−quarte r .
csv

wget http : // c a p i t a l b i k e s h a r e . com/ a s s e t s / f i l e s / t r ip−history−data/2013−2nd−quarte r .
csv

f o r the l a t i t u d e and l o n g i t u d e
wget http : // c a p i t a l b i k e s h a r e . com/data/ s t a t i o n s / b i k e S t a t i o n s . xml

merge the csv f i l e s
${BASEDIR}/csvMerge . py 201?−???− quarte r . csv a l l−t r i p s−a s p a t i a l . csv

expand the csv f i l e
${BASEDIR}/expandFileWithXY . py a l l−t r i p s−a s p a t i a l . csv b i k e S t a t i o n s . xml a l l−t r i p s .

csv

A.1.2 csvMerge.py

This script merges all of the quarterly CSV files into one large CSV file, merging columns that are the same but
have different names in data files from different time periods.

#!/usr/b in/python
Merge CSV f i l e s wi th the same columns

Copyright (C) 2013 Matthew Wigginton Conway .

Licensed under the Apache License , Version 2.0 (the ” License ”) ;
you may not use t h i s f i l e e x c e p t in compliance wi th the License .
You may o b t a i n a copy o f the License at

h t t p : //www. apache . org/ l i c e n s e s /LICENSE−2.0

Unless r e q u i r e d by a p p l i c a b l e law or agreed to in wr i t i ng , s o f t w a r e
d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
See the License f o r the s p e c i f i c language governing permiss ions and
l i m i t a t i o n s under the License .

from sys import argv
import csv
import re

g e t the l a s t argument
outf i leName = argv [−1]

13

Matthew Wigginton Conway December 14, 2013

f i e ldnames = [’ durat ion ’ , ’ durat ion sec ’ , ’ s t a r t date ’ , ’ s t a r t s t a t i o n ’ , ’ s t a r t
t e rmina l ’ , ’ end date ’ , ’ end s t a t i o n ’ , ’ end termina l ’ , ’ b ike num ’ , ’ s u b s c r i p t i o n

type ’ , ’ b ike key ’]
out = csv . DictWriter (open (outf i leName , ’w ’) , f i e ldnames)
out . wr i t eheader ()

def renameKey (row , key , newKey) :
i f row . has key (key) :

row [newKey] = row [key]
del row [key]
return row

count = 0
for i n f i l e in argv [1 : −1] :

print ’ \ nProcess ing %s ’ % i n f i l e

r eader = csv . DictReader (open (i n f i l e))

for row in reader :
Standard i ze f i e l d names
renameKey (row , ’Member Type ’ , ’Type ’)
renameKey (row , ’ S ta r t s t a t i o n ’ , ’ S ta r t Sta t i on ’)
renameKey (row , ’End s t a t i o n ’ , ’End Stat i on ’)
renameKey (row , ’ Duration (Sec) ’ , ’ Duration (Sec) ’)
renameKey (row , ’ Duration (sec) ’ , ’ Duration (Sec) ’)
renameKey (row , ’ S ta r t te rmina l ’ , ’ S ta r t Terminal ’)
renameKey (row , ’End termina l ’ , ’End Terminal ’)
renameKey (row , ’ Subsc r ibe r Type ’ , ’ Subsc r ip t i on Type ’)
renameKey (row , ’Type ’ , ’ Subsc r ip t i on Type ’)

Make f i e l d names R−f r i e n d l y
renameKey (row , ’ Duration ’ , ’ durat ion ’)
renameKey (row , ’ Duration (Sec) ’ , ’ durat ion sec ’)
renameKey (row , ’ S ta r t date ’ , ’ s t a r t date ’)
renameKey (row , ’ S ta r t Sta t i on ’ , ’ s t a r t s t a t i o n ’)
renameKey (row , ’ S ta r t Terminal ’ , ’ s t a r t t e rmina l ’)
renameKey (row , ’End date ’ , ’ end date ’)
renameKey (row , ’End Stat i on ’ , ’ end s t a t i o n ’)
renameKey (row , ’End Terminal ’ , ’ end termina l ’)
renameKey (row , ’ Bike#’ , ’ b ike num ’)
renameKey (row , ’ Subsc r ip t i on Type ’ , ’ s u b s c r i p t i o n type ’)
renameKey (row , ’ S ta r t time ’ , ’ s t a r t date ’)
renameKey (row , ’ Bike Key ’ , ’ b ike key ’)

Sometimes they don ’ t e x p l i c i t l y record the t e r m i n a l s
i f not row . has key (’ s t a r t te rmina l ’) :

r s t r i p ensures t h e r e i s no t r a i l i n g whi te space
row [’ s t a r t te rmina l ’] = row [’ s t a r t s t a t i o n ’] . r s t r i p () [−6:−1]

14

Matthew Wigginton Conway December 14, 2013

i f not row . has key (’ end termina l ’) :
row [’ end termina l ’] = row [’ end s t a t i o n ’] . r s t r i p () [−6:−1]

Back out the durat ion
i f not row . has key (’ durat ion sec ’) :

m = re . search (’ ([0−9]+)h [.]+([0−9]+)mi?n ? [.]+([0−9]+) s ’ , row [’
durat ion ’])

i f m == None :
print ’ Unable to parse durat ion %s ’ % row [’ durat ion ’]

else :
row [’ durat ion sec ’] = i n t (m. group (1)) ∗ 3600 + i n t (m. group (2)) ∗

60 + i n t (m. group (3))

out . writerow (row)

count += 1
i f count % 50000 == 0 :

print ’%s . . . ’ % count ,

print ’%s t o t a l rows proce s sed ’ % count

A.1.3 expandFileWithXY.py

Station locations are not included in the trip history feed, only their names and numbers. This script takes a
trip history file and adds spatial coordinates of the stations, based on the locations of stations in the CaBi XML
API. It also projects the location to Universal Transverse Mercator so that Euclidean geometry can be used in
calculations.

#!/usr/b in/python
Add X and Y c o o r d i n a t e s to a C a p i t a l Bikeshare t r i p h i s t o r y f i l e

Copyright (C) 2013 Matthew Wigginton Conway .

Licensed under the Apache License , Version 2.0 (the ” License ”) ;
you may not use t h i s f i l e e x c e p t in compliance wi th the License .
You may o b t a i n a copy o f the License at

h t t p : //www. apache . org/ l i c e n s e s /LICENSE−2.0

Unless r e q u i r e d by a p p l i c a b l e law or agreed to in wr i t i ng , s o f t w a r e
d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
See the License f o r the s p e c i f i c language governing permiss ions and
l i m i t a t i o n s under the License .

import csv
from xml . dom . minidom import parse

15

Matthew Wigginton Conway December 14, 2013

from sys import argv
from pyproj import Proj , t rans form

sourcePro j = Proj (i n i t=’ epsg :4326 ’)
WGS 84 UTM Zone 18N meters
des tPro j = Proj (i n i t=’ epsg :32618 ’)

p roc ess arguments

inCsvFileName = argv [1]
xmlFileName = argv [2]
outCsvFileName = argv [3]

Bui ld the s t a t i o n database
s t a t i o n F i l e = parse (xmlFileName)

s t a t i o n s = d i c t ()

convenience
def getTagContents (parent , tagName) :

return s t a t i o n . getElementsByTagName (tagName) [0] . f i r s t C h i l d . nodeValue

for s t a t i o n in s t a t i o n F i l e . getElementsByTagName (’ s t a t i o n ’) :
s t I d = getTagContents (s ta t i on , ’ terminalName ’)

todo : p r o j e c t
l a t = f l o a t (getTagContents (s ta t i on , ’ l a t ’))
lon = f l o a t (getTagContents (s ta t i on , ’ long ’))

x , y = trans form (sourceProj , destProj , lon , l a t)

s t a t i o n s [s t I d] = d i c t (
x=i n t (round (x)) ,
y=i n t (round (y))
)

read CSV
inCsv = csv . DictReader (open (inCsvFileName))
outFieldNames = [n for n in inCsv . f i e ldnames]
outFieldNames . append (’ s t a r t x ’)
outFieldNames . append (’ s t a r t y ’)
outFieldNames . append (’ end x ’)
outFieldNames . append (’ end y ’)
outCsv = csv . DictWriter (open (outCsvFileName , ’w ’) , outFieldNames)
outCsv . wr i teheader ()

unmatched = 0
count = 0

16

Matthew Wigginton Conway December 14, 2013

try :
for row in inCsv :

try :
row [’ s t a r t x ’] = s t a t i o n s [row [’ s t a r t te rmina l ’]] [’ x ’]
row [’ s t a r t y ’] = s t a t i o n s [row [’ s t a r t te rmina l ’]] [’ y ’]
row [’ end x ’] = s t a t i o n s [row [’ end termina l ’]] [’ x ’]
row [’ end y ’] = s t a t i o n s [row [’ end termina l ’]] [’ y ’]

except KeyError :
unmatched += 1
row [’ s t a r t x ’] = ’ ’
row [’ s t a r t y ’] = ’ ’
row [’ end x ’] = ’ ’
row [’ end y ’] = ’ ’

outCsv . writerow (row)

count += 1
i f count % 50000 == 0 :

print ’%s t r i p s proce s s ed ’ % count

f ina l ly :
print ’%s / %s t r i p s unmatched ’ % (unmatched , count)

A.1.4 findTripsNoCoords.py

This script simply counts the number of trips with no coordinates.

#!/usr/b in/python
Count the number o f t r i p s wi th no geo c o o r d i n a t e s

Copyright (C) 2013 Matthew Wigginton Conway .

Licensed under the Apache License , Version 2.0 (the ” License ”) ;
you may not use t h i s f i l e e x c e p t in compliance wi th the License .
You may o b t a i n a copy o f the License at

h t t p : //www. apache . org/ l i c e n s e s /LICENSE−2.0

Unless r e q u i r e d by a p p l i c a b l e law or agreed to in wr i t i ng , s o f t w a r e
d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
See the License f o r the s p e c i f i c language governing permiss ions and
l i m i t a t i o n s under the License .

from csv import DictReader

17

Matthew Wigginton Conway December 14, 2013

r = DictReader (open (’ a l l−t r i p s . csv ’))

n o s p a t i a l = 0
i = 0
for l i n e in r :

i += 1
i f i % 100000 == 0 :

print ’%s (%s) . . . ’ % (i , n o s p a t i a l)

i f l i n e [’ s t a r t x ’] == ’ ’ or l i n e [’ end x ’] == ’ ’ or\
l i n e [’ s t a r t y ’] == ’ ’ or l i n e [’ end y ’] == ’ ’ :

n o s p a t i a l += 1

print
print ’ Tr ips with no s p a t i a l c oo rd ina t e s : %s ’ % n o s p a t i a l

A.2 Effects of Time on Bikeshare Use

This section contains scripts used to evaluate the effects of time on bikeshare use.

A.2.1 periods.R

This code simply defines how the time periods are coded. They are stored as single numbers in the file to reduce
the file size.

Time p e r i o d s

Copyright (C) 2013 Matthew Wigginton Conway .

Licensed under the Apache License , Version 2.0 (the ” License ”) ;
you may not use t h i s f i l e e x c e p t in compliance wi th the License .
You may o b t a i n a copy o f the License at

h t t p : //www. apache . org/ l i c e n s e s /LICENSE−2.0

Unless r e q u i r e d by a p p l i c a b l e law or agreed to in wr i t i ng , s o f t w a r e
d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
See the License f o r the s p e c i f i c language governing permiss ions and
l i m i t a t i o n s under the License .

We use the same time−of−day spans as used by MWCOG in t h e i r four−s t e p model ,
page 14:

Metropo l i tan Washington Counci l o f Governments . User ’ s Guide f o r the MWCOG/
NCRTPB Trave l

Forecas t ing Model , Version 2 . 3 , Bui ld 52: Draf t Report . Washington , 2013.
h t t p : //www. mwcog . org/ t r a n s p o r t a t i o n / a c t i v i t i e s /models/ f i l e s /V2. 3 . 5 2 Users Guide

v2 w appA . pdf .

18

Matthew Wigginton Conway December 14, 2013

per iod . a l l <− 1 :8
per iod . wkmorn <− 1
per iod . wkmid <−2
per iod . wkeve <− 3
per iod . wknight <− 4
per iod . wemorn <− 5
per iod . wemid <− 6
per iod . weeve <− 7
per iod . wenight <− 8
per iod . count <− 8

A.2.2 load data.R

This code loads and filters the trip data from CaBi, dropping trips over 20 km or 24 hours.

load−data .R: Abs t rac t data l o a d i n g

Copyright (C) 2013 Matthew Wigginton Conway .

Licensed under the Apache License , Version 2.0 (the ” License ”) ;
you may not use t h i s f i l e e x c e p t in compliance wi th the License .
You may o b t a i n a copy o f the License at

h t t p : //www. apache . org/ l i c e n s e s /LICENSE−2.0

Unless r e q u i r e d by a p p l i c a b l e law or agreed to in wr i t i ng , s o f t w a r e
d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
See the License f o r the s p e c i f i c language governing permiss ions and
l i m i t a t i o n s under the License .

I f the argument i s true , then load j u s t a 1 percent sample o f the data
load data <− function (sample=F) {

i f (sample) {
data raw <− read . csv (’ data/sample−t r i p s −.1 pct . csv ’)

}
else {

data raw <− read . csv (’ data/ a l l−t r i p s . csv ’)
}

grab only t r i p s 2 hours or l e s s
data subset <− subset (data raw , data raw [” durat ion sec ”] <= 7200)

and 20 km or l e s s
This a l s o i m p l i c i t l y removes t r i p s t h a t are miss ing s t a r t and/or end
c o o r d i n a t e s ; the s q r t f u n c t i o n w i l l r e turn NA and the s u b s e t f u n c t i o n
w i l l e x c l u d e t h a t record .

19

Matthew Wigginton Conway December 14, 2013

data subset <− subset (data subset , sqrt ((data subset [” s t a r t x”] − data subset [”
end x”]) ˆ2

+ (data subset [” s t a r t y”] − data subset [
”end y”]) ˆ2)

<= 20000)

Remove t r i p s wi th n u l l s t a r t t imes
data subset <− subset (data subset , data subset [” s t a r t date ”] != ’ ’)

return (data subset)
}

A.2.3 labeling.R

This code takes the Capital Bikeshare trip data, cleaned by the above scripts, and labels it based on trip start
time period.

Crosstab the t r i p s by o r i g i n , d e s t i n a t i o n and time o f day , and compare the t e s t
s t a t i s t i c s

Copyright (C) 2013 Matthew Wigginton Conway .

Licensed under the Apache License , Version 2.0 (the ” License ”) ;
you may not use t h i s f i l e e x c e p t in compliance wi th the License .
You may o b t a i n a copy o f the License at

h t t p : //www. apache . org/ l i c e n s e s /LICENSE−2.0

Unless r e q u i r e d by a p p l i c a b l e law or agreed to in wr i t i ng , s o f t w a r e
d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
See the License f o r the s p e c i f i c language governing permiss ions and
l i m i t a t i o n s under the License .

Constants
TIMEZONE=”America/New York”

hiram , hor tense
setwd (’/media/matthewc/ E x c e l s i o r /GEOG172/bikeshare−a n a l y s i s ’)
S t a r l a b
#setwd (’E: /GEOG172/ b i kes har e−a n a l y s i s ’)

source (’ a n a l y s i s / load data .R ’)
source (’ a n a l y s i s /pe r i od s .R ’)

data <− load data (sample=F)

l a b e l <− function (rawDate) {

20

Matthew Wigginton Conway December 14, 2013

date <− s t rpt ime (rawDate , format=’%m/%d/%Y %H:%M’ , tz=TIMEZONE)

f i r s t check the time
hr <− date$hour

i f (hr >= 6 && hr < 9) {
per iod <− per iod . wkmorn

} else i f (hr >= 9 && hr < 15) {
per iod <− per iod . wkmid

} else i f (hr >= 15 && hr < 19) {
per iod <− per iod . wkeve

} else {
per iod <− per iod . wknight

}

check f o r weekend
i f (date$wday == 0 | | date$wday == 6) {

per iod <− per iod + 4
}

Apply c o r r e c t i o n f o r Friday n i g h t s (weekends) and Sunday n i g h t s (weekday)
i f (date$wday == 0 && hr >= 19) {

per iod <− per iod . wknight
} else i f (date$wday == 5 && hr >= 19) {

per iod <− per iod . wenight
}

return (per iod)
}

l a b e l a l l o f the data
I t would seem simple to j u s t use vapply , but t h a t cr ash es R. So we chunk i t i n t o

groups o f
10000
data$ l a b e l <− app ly (data ,)
dataLen <− length (data$start date)
Writing d i r e c t l y i n t o a data frame i s r e a l l y s low
data l a b e l <− rep (NA, dataLen)

don ’ t s t o r e a huge v e c t o r t h a t i s r e a l l y j u s t an index
i <− 1
while (i <= dataLen) {

i f (i %% 100000 == 0)
cat (i , ’ . . . ’)

data l a b e l [i] <− l a b e l (data$start date [i])

i <− i + 1
}

21

Matthew Wigginton Conway December 14, 2013

data$ l a b e l <− data l a b e l

s t o r e l a b e l e d data
write . csv (data , f i l e=” data/data−c leaned−l a b e l e d . csv ”)

A.2.4 relabel.R

This script calculates test statistics for the observed distribution of trips then randomizes the distribution of trips
to time periods, conducting a Monte Carlo simulation to determine the p-value of the observed trip distribution.

R e l a b e l the data and t e s t f o r an e f f e c t o f time

Copyright (C) 2013 Matthew Wigginton Conway .

Licensed under the Apache License , Version 2.0 (the ” License ”) ;
you may not use t h i s f i l e e x c e p t in compliance wi th the License .
You may o b t a i n a copy o f the License at

h t t p : //www. apache . org/ l i c e n s e s /LICENSE−2.0

Unless r e q u i r e d by a p p l i c a b l e law or agreed to in wr i t i ng , s o f t w a r e
d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
See the License f o r the s p e c i f i c language governing permiss ions and
l i m i t a t i o n s under the License .

Number o f s i m u l a t i o n s f o r the r e l a b e l
NSIMS = 999

source (’ a n a l y s i s /pe r i od s .R ’)

This b u i l d s a 3−dimensiona l Xtab , wi th x be ing the l a b e l , Y be ing the s t a r t
s t a t i o n , and Z be ing the end s t a t i o n

bui ldTripMatr ix <− function (data) {
return (xtabs (˜ l a b e l + start t e rmina l + end terminal , data))

}

This randomizes the order o f the c h a r a c t e r v e c t o r passed to i t
randomizeOrder <− function (vector) {

We order by random numbers
orderBy <− runif (length (vector))
return (vector [order (orderBy)])

}

This computes the t e s t s t a t i s t i c f o r two matr ices
ca lcTs <− function (observed , expected) {

return (sum((observed − expected) ˆ2)/sum(expected) ˆ2)

22

Matthew Wigginton Conway December 14, 2013

}

This computes p a i r w i s e t e s t s t a t i s t i c s f o r each time per iod r e l a t i v e to every
o t her

computePairwiseStats <− function (t r ipMatr ix) {
Bui ld a matrix f o r the t e s t s t a t i s t i c s
p a i r w i s e S t a t s <− matrix (NA, nrow=per iod . count , ncol=per iod . count)

compare each one to a l l o t h e r s
for (i in per iod . a l l) {

for (j in per iod . a l l) {
obs <− t r ipMatr ix [i , ,]
ex <− t r ipMatr ix [j , ,]

s c a l e so sums are same
p a i r w i s e S t a t s [i , j] <− ca lcTs (obs , ex ∗ (sum(ex)/sum(obs)))

}
}

return (p a i r w i s e S t a t s)
}

data <− read . csv (’ data/data−c leaned−l a b e l e d . csv ’)
o r i g <− bui ldTripMatr ix (data)

origTS <− computePairwiseStats (o r i g)

Make an array to s t o r e the t e s t s t a t i s t i c s in
simulatedTS <− array (NA, dim=c (NSIMS, per iod . count , pe r iod . count))

for (i in 1 :NSIMS) {
cat (’ Repet i t i on ’ , i , ’ \n ’)

Randomize the l a b e l s , p r e s e r v i n g the margina ls
data$ l a b e l <− randomizeOrder (data$ l a b e l)

t r ipMatr ix <− bui ldTripMatr ix (data)

Compute the p a i r w i s e s t a t s and s t o r e them
simulatedTS [i , ,] <− computePairwiseStats (t r ipMatr ix)

}

Find the p−v a l u e s
pva l s <− matrix (NA, nrow=per iod . count , ncol=per iod . count)
for (i in per iod . a l l) {

for (j in per iod . a l l) {
pva l s [i , j] <− sum(simulatedTS [, i , j] >= origTS [i , j]) / (NSIMS + 1)

}

23

Matthew Wigginton Conway December 14, 2013

}

Write a CSV f i l e t h a t i s used to genera te the t a b l e in the TeX wri teup
write . csv (pvals , ’ writeup/pva l s . csv ’)

A.3 Effects of Space on Bikeshare Use

A.3.1 morans i.R

This script was used to calculate Moran’s I to calculate how spatially autocorrelated the popularity of bikeshare
stations is.

C a l c u l a t e Moran ’ s I f o r b i k e share data ; are s t a t i o n p o p u l a r i t i e s a u t o c o r r e l a t e d
?

Copyright (C) 2013 Matthew Wigginton Conway .

Licensed under the Apache License , Version 2.0 (the ” License ”) ;
you may not use t h i s f i l e e x c e p t in compliance wi th the License .
You may o b t a i n a copy o f the License at

h t t p : //www. apache . org/ l i c e n s e s /LICENSE−2.0

Unless r e q u i r e d by a p p l i c a b l e law or agreed to in wr i t i ng , s o f t w a r e
d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
See the License f o r the s p e c i f i c language governing permiss ions and
l i m i t a t i o n s under the License .

TIMEZONE <− ’ America/New York ’
BREAK LINKS OVER <− 4000 # 4000 m, e m p i r i c a l l y determined ; much l e s s than 4000m

and we s t a r t s e e i n g more than
two c l u s t e r s , and we r e a l l y do want to keep i t

c l u s t e r e d to j u s t DC/Arl ing ton/Alexandria
and Montgomery County .

EXCLUDE STATIONS <− c (’ 32004 ’ , ’ 32009 ’ , ’ 32005 ’ , ’ 32007 ’) # Exclude the four
s t a t i o n s in Montgomery County

StarLab
setwd (’E : /GEOG172/bikeshare−a n a l y s i s ’)
l ibrary (p ly r)
l ibrary (s p a t s t a t)
l ibrary (spdep)
l ibrary (AID)

data <− read . csv (’ data/data−c leaned−l a b e l e d . csv ’)

Firs t , c a l c u l a t e s t a t i o n p o p u l a r i t i e s
f i r s t <− function (vect) { return (vect [1]) }

24

Matthew Wigginton Conway December 14, 2013

This f u n c t i o n r e t u r n s the time as seconds s i n c e January 1 , 1970
epoch <− function (date) {

return (as . integer (as . POSIXct (date)))
}

C a l c u l a t e the l o w e s t date in a v e c t o r o f d a t e s . Return an epoch time .
minDate <− function (rawDates) {

l owest <− NA

for (rawDate in rawDates) {
date <− s t rpt ime (rawDate , format=’%m/%d/%Y %H:%M’ , tz=TIMEZONE)

i f (i s . na(lowest)) {
l owest <− epoch (date)

}
else i f (date < l owest) {

l owest <− epoch (date)
}

}

return (lowest)
}

C a l c u l a t e the l a r g e s t date in a v e c t o r o f d a t e s . Return an epoch time .
maxDate <− function (rawDates) {

g r e a t e s t <− NA

for (rawDate in rawDates) {
date <− s t rpt ime (rawDate , format=’%m/%d/%Y %H:%M’ , tz=TIMEZONE)

i f (i s . na(g r e a t e s t)) {
g r e a t e s t <− epoch (date)

}
else i f (date > g r e a t e s t) {

g r e a t e s t <− epoch (date)
}

}

return (g r e a t e s t)
}

pop can be i n t e r p r e t e d as t r i p s per day , i f f you ’ re us ing p o p u l a t i o n data
F i r s t we summarise the b i k e movements at the s t a r t and end o f t r i p s
popu lar i tyDest <− ddply (data , c (’ end termina l ’) , summarise ,

No need to have x ’ s and y ’ s here , they come from
o r i g

NDest=length (end x) ,
f i r s t D e s t=minDate (start date) ,

25

Matthew Wigginton Conway December 14, 2013

l a s tD e s t=maxDate (start date)
)

popu la r i tyOr ig <− ddply (data , c (’ s t a r t t e rmina l ’) , summarise ,
x=f i r s t (start x) ,
y=f i r s t (start y) ,
NOrig=length (start x) ,
f i r s t O r i g=minDate (start date) ,

l a s t O r i g=maxDate (start date)
)

Now combine the o r i g i n s and the d e s t i n a t i o n s
F u l l inner j o i n ; remove any s t a t i o n t h a t doesn ’ t have both t r i p o r i g i n s and t r i p

t e r m i n a t i o n s
popu la r i ty <− merge(popular i tyOr ig , popular i tyDest , a l l=F, by . x=’ s t a r t te rmina l ’ ,

by . y=’ end termina l ’)
popu la r i ty <− rename (popular i ty , c (” s t a r t te rmina l ”=” termina l ”))

Remove s t a t i o n s
popu la r i ty <− subset (popu lar i ty , ! (t e rmina l %in% EXCLUDE STATIONS))

attach (popu la r i ty)

Sum up the number o f b i k e movements and d i v i d e by the number o f days the s t a t i o n
i s open

Firs t , c a l c u l a t e span
The matrix b i t g e t s the f i r s t movement recorded at the s t a t i o n , e i t h e r an o r i g i n

or a d e s t i o n a t i o n .
We can use min/max because a l l t imes are r e p r e s e n t e d as seconds s i n c e Jan 1 ,

1970 at t h i s p o i n t .
lastOpDate <− apply (matrix (c (l a s tOr ig , l a s tD e s t) , ncol=2) , 1 , max, na .rm=T)
f i r s tOpDate <− apply (matrix (c (f i r s t O r i g , f i r s t D e s t) , ncol=2) , 1 , min , na .rm=T)
spans <− (((lastOpDate − f i r s tOpDate) / 86400) + 1)
popu la r i ty$pop <− (NOrig + NDest) / spans

Normalize the p o p u l a r i t y as much as p o s s i b l e
We use the Shapiro−Wilk method because i t gave a number c l o s e to the average
when used on sample data . Need to check wi th Dr . Sweeney r e g a r d i n g the b e s t
way to choose a method .
bctransform <− function (data , lambda) {

i f (lambda == 0) {
return (log (data))

}
else {

return ((dataˆlambda − 1)/lambda)
}

}
bclam <− boxcoxnc (popu la r i ty$pop , method=’ sw ’)

26

Matthew Wigginton Conway December 14, 2013

popu la r i ty$bcpop <− bctransform (popu la r i ty$pop , bclam$ r e s u l t [1])
cat (’Box−Cox p−va lue s : ’ , bclam$ r e s u l t [2 : 4 ,])

detach (popu la r i ty)

save the p o p u l a r i t i e s to avoid r e c a l c u l a t i o n l a t e r
write . csv (popu lar i ty , ’ data/ s ta t i on−p o p u l a r i t i e s . csv ’)
Re−read p o p u l a r i t i e s : s t a r t from here i f you ’ re r e p e a t i n g the a n a l y s i s .
popu la r i ty <− read . csv (’ data/ s ta t i on−p o p u l a r i t i e s . csv ’)

attach (popu la r i ty)

Make a p l o t f o r the wr i teup showing why we used Box−Cox
layout (matrix (1 : 2 , 1 , 2))
hist (pop , main=NA, xlab=’ Bike movements/day ’ , y lab=’Number o f s t a t i o n s ’)
hist (bcpop , main=NA, xlab=paste (’Box−Cox transformed bike movements/day (lambda=’ ,

bclam$ r e s u l t [1] , ’) ’ , sep=’ ’) , y lab=’Number o f s t a t i o n s ’)
graphics . of f ()

b u i l d the ne ighbor matrix
nbmat <− t r i 2nb (popu la r i ty [, c (’ x ’ , ’ y ’)] , row .names=termina l)

Drop r e a l l y long l i n k s
for (i in 1 : length (nbmat)) {

newNb <− c ()
for (j in nbmat [[i]]) {

d i s t <− sqrt ((x [i] − x [j]) ˆ2 + (y [i] − y [j]) ˆ2)
i f (d i s t <= BREAK LINKS OVER) {

newNb <− c (newNb , as . integer (j))
}

}
nbmat [[i]] <− newNb

}

weights <− nb2 l i s tw (nbmat , s t y l e=’W’)

Plot the t r i a n g u l a t i o n
plot (weights , coords=popu la r i ty [, c (’ x ’ , ’ y ’)] , main=” Stat i on adjacency ”)

l a b e l s
text (locator () , labels=c (’ Washington ’ , ’ Ar l ington ’ , ’ Alexandria ’))

graphics . of f ()

C a l u l a t e moran ’ s I
moran . t e s t (bcpop , weights)
moran . plot (bcpop , weights , x lab=’Box−Cox transformed bike movements/day ’ , y lab=’

S p a t i a l l y lagged transformed bike movements/day ’)

27

Matthew Wigginton Conway December 14, 2013

A.3.2 ui.R

This script is the UI for the Shiny application used to evaluate the link threshold distance (see figure 3).

Copyright (C) 2013 Matthew Wigginton Conway .

Licensed under the Apache License , Version 2.0 (the ” License ”) ;
you may not use t h i s f i l e e x c e p t in compliance wi th the License .
You may o b t a i n a copy o f the License at

h t t p : //www. apache . org/ l i c e n s e s /LICENSE−2.0

Unless r e q u i r e d by a p p l i c a b l e law or agreed to in wr i t i ng , s o f t w a r e
d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
See the License f o r the s p e c i f i c language governing permiss ions and
l i m i t a t i o n s under the License .

l ibrary (sh iny)

shinyUI (pageWithSidebar (
headerPanel (”Link Trimming Distance ”) ,
s idebarPane l (

s l i d e r I n p u t (’BREAK LINKS ’ , ’ Break l i n k s l onge r than (m) : ’ , min=100 , max
=50000 , va lue =4000 , step=100)

) ,
mainPanel (plotOutput (’ l i n k s ’))
))

A.3.3 server.R

This is the server component of the Shiny application used to evaluate the link threshold distance.

Copyright (C) 2013 Matthew Wigginton Conway .

Licensed under the Apache License , Version 2.0 (the ” License ”) ;
you may not use t h i s f i l e e x c e p t in compliance wi th the License .
You may o b t a i n a copy o f the License at

h t t p : //www. apache . org/ l i c e n s e s /LICENSE−2.0

Unless r e q u i r e d by a p p l i c a b l e law or agreed to in wr i t i ng , s o f t w a r e
d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
See the License f o r the s p e c i f i c language governing permiss ions and
l i m i t a t i o n s under the License .

l ibrary (sh iny)
l ibrary (spdep)

28

Matthew Wigginton Conway December 14, 2013

Load the data and b u i l d the i n i t i a l t r i a n g u l a t i o n
setwd (”/media/matthewc/ E x c e l s i o r /GEOG172/bikeshare−a n a l y s i s ”)
s t a t i o n s <− read . csv (’ data/ s t a t i o n s . csv ’)
attach (s t a t i o n s)
globalNbmat <− t r i 2nb (s t a t i o n s [, c (’ x ’ , ’ y ’)])

sh inyServer (function (input , output) {
output$ l i n k s <− renderPlot ({

nbmat <− globalNbmat
Drop r e a l l y long l i n k s
for (i in 1 : length (nbmat)) {

newNb <− c ()
for (j in nbmat [[i]]) {

d i s t <− sqrt ((x [i] − x [j]) ˆ2 + (y [i] − y [j]) ˆ2)
i f (d i s t <= input$BREAK LINKS) {

newNb <− c (newNb , as . integer (j))
}

}
nbmat [[i]] <− newNb

}

weights <− nb2 l i s tw (nbmat , s t y l e=’W’)

plot (weights , s t a t i o n s [, c (’ x ’ , ’ y ’)])
})

})

29

	Data Processing
	Time of Day Effects
	Methodology
	Results
	Discussion

	Effects of Space on Bikeshare Use
	Methodology
	Results
	Discussion

	General Discussion and Further Research
	Source Code Listings
	Data Management
	fetchData.sh
	csvMerge.py
	expandFileWithXY.py
	findTripsNoCoords.py

	Effects of Time on Bikeshare Use
	periods.R
	load_data.R
	labeling.R
	relabel.R

	Effects of Space on Bikeshare Use
	morans_i.R
	ui.R
	server.R

